US009274952B2

a2 United States Patent

Guthrie et al.

US 9,274,952 B2
*Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

MOVING CHECKPOINT-BASED
HIGH-AVAILABILITY LOG AND DATA
DIRECTLY FROM A PRODUCER CACHE TO
A CONSUMER CACHE

Applicant: GLOBALFOUNDRIES INC., Grand
Cayman (KY)

Guy Lynn Guthrie, Austin, TX (US);
Steven R. Kunkel, Rochester, MN (US);
Hien Minh Le, Cedar Park, TX (US);
Geraint North, Manchester (GB);
William J. Starke, Round Rock, TX

Inventors:

(US)

Assignee: GLOBALFOQUNDRIES INC., Grand
Cayman (KY)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 79 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/170,205

Filed: Jan. 31, 2014
Prior Publication Data
US 2015/0100732 Al Apr. 9,2015

Related U.S. Application Data

Continuation of application No. 14/048,474, filed on
Oct. 8, 2013.

Int. Cl.
GO6F 12/08 (2006.01)
GO6F 12/12 (2006.01)
(Continued)
U.S. CL
CPC ... GOG6F 12/0802 (2013.01); GO6F 11/1446

(2013.01); GO6F 11/1666
(2013.01);G06F11/2097 (2013.01); GO6F
12/0888 (2013.01); GO6F 12/12 (2013.01);
GO6F 11/1076 (2013.01); GO6F 12/0815
(2013.01); GO6F 2212/1016 (2013.01); GO6F
2212/152(2013.01)

l

(58) Field of Classification Search

CPC GOGF 12/0888; GOGF 12/0811; GOGF
12/0853; GOGF 12/0802; GOGF 12/0815;

GOG6F 12/12; GOG6F 11/1446; GOGF 11/1666

USPC i 711/122, 133

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,200,620 B2 *
8,140,739 B2*

4/2007 Gupta ..o 707/999.201
3/2012 Langlois GO6F 12/0246
365/158

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2259525 A2 8/2010

OTHER PUBLICATIONS

Milenkovic et al., Cache Injection on Bus Based Multiprocessors,
University of Belgrade, 1999.

Primary Examiner — Pierre-Michel Bataille
(74) Attorney, Agent, or Firm — Thompson Hine LLP

(57) ABSTRACT

A technique of operating a data processing system includes
logging addresses for cache lines modified by a producer core
in a data array ofa producer cache to create a high-availability
(HA) log for the producer core. The technique also includes
moving the HA log directly from the producer cache to a
consumer cache of a consumer core and moving HA data
associated with the addresses of the HA log directly from the
producer cache to the consumer cache. The HA log corre-
sponds to a cache line that includes multiple of the addresses.
Finally, the technique includes processing, by the consumer
core, the HA log and the HA data for the data processing
system.

19 Claims, 5 Drawing Sheets

500

504
Create HA log

Log Address of Modified
Cache Line in HA log (Buffer)

| < 506

I

Deassert HA bit for
logged cache line

< 507

level?

Buffer reached

510
| Inject HA log into Consumer Cache F

l

US 9,274,952 B2

Page 2
(51) Int.ClL 8,347,036 B2 1/2013 Cargnoni et al.
GO6F 11/14 (2006.01) 8,863,224 B2* 10/2014 Hecht GO6F 21/604
713/161
GOG6F 11/16 (2006.01)
GOGF 1120 (2006.01) 8,874,841 B2* 10/2014 Patterson G06F7?/10/?L7‘
GO6F 11/10 (2006.01) 2005/0071391 Al* 3/2005 Fuerderer etal. 707/204
) 2006/0064518 Al 3/2006 Bohrer et al.
(56) References Cited 2010/0241813 Al 9/2010 Shen
2014/0101110 Al* 4/2014 Rittleetal. ...ccocvvvn.n... 707/654
U.S. PATENT DOCUMENTS 2014/0289449 Al* 9/2014 GOGF 3/061
711/103

8,285,939 B2
8,312,220 B2

10/2012 Guthrie et al.
11/2012 Guthrie et al.

* cited by examiner

US 9,274,952 B2

Sheet 1 of 5

Mar. 1, 2016

U.S. Patent

I Dro

051 (s)sda

743
JousalY|

9z} (s)Jeniag

¥21 (S)ienes

001

0zl (SINA
901 Aerdsiq 811 (s)uoieoyddy
601 Jedepy 911 JosIAIBdAH
YIomjeN
il (s)SO
211 Jasmoig
201 (s)aoneq 7201 —
indu 10S$800. 701
wajshsgng
abel01g eleq

I weisAg Buisseoold ereq

US 9,274,952 B2

Sheet 2 of 5

Mar. 1, 2016

U.S. Patent

vie
8yoe” JaWNSU0N

YA
Jawnsuo)

80C
Jajjng ajeipswlaiu]

102 Jayng Jejnaiin

90z auIbug
uonuaAlaul-dooug

G0c
auibug jno-jsen

v0C
ayoe) 1eonpoid

202 8109
Jaonpoid

US 9,274,952 B2

Sheet 3 of 5

Mar. 1, 2016

U.S. Patent

¢ DI

v1g
8yoe) JaWnsuo)

1N0-se) [elaje

#0¢€ 607 VH

20¢ ered vH

v0C
ayoe) Jsonpo.d

US 9,274,952 B2

Sheet 4 of 5

Mar. 1, 2016

U.S. Patent

¥ DId
eleq TTERET
eleq TERET
eeq STRERET
90F Aewy y07 Aopaig
20¥ 8Yoe)d

US 9,274,952 B2

Sheet 5 of 5

Mar. 1, 2016

U.S. Patent

9 D1y

pu3 019

1

8yoe) Jawnsuo) o} (aur ayoe)
PBLIPON PZIWNOIA) Bled YH 0O

809 =
£PAZIWNDIA BUI
ayoe) palIpoly
909 ,
U7 8Yoe) PalIPO
10051 10})1q YH Hossy
f
009

S Bro

pug A%

1

ayoe) Jawnsuon o 6o yH 108lu)

0LG =

CIoAg
payoeal Jayng

aul| ayoed pabbo
| 10439 vH pesseeq

L0

»

(1ang) Bo| wH Ul 8uI BYoED
palyipol Jo ssaippy Bo

L

906 — |

S
<
<

Bo| yH s1e81n
[(78)sae

00S

#0G = |

US 9,274,952 B2

1
MOVING CHECKPOINT-BASED
HIGH-AVAILABILITY LOG AND DATA
DIRECTLY FROM A PRODUCER CACHE TO
A CONSUMER CACHE

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/048,474, entitled “TECHNIQUES FOR
MOVING CHECKPOINT-BASED HIGH-AVAILABILITY
LOG AND DATA DIRECTLY FROM A PRODUCER
CACHE TO A CONSUMER CACHE,” filed on Oct. 8, 2013,
the contents of which are incorporated herein by reference in
their entirety for all purposes.

BACKGROUND

The disclosure is generally directed to checkpoint-based
high-availability log and data and, more particularly, to mov-
ing checkpoint-based high-availability log and data directly
from a producer cache to a consumer cache.

Computing may be thought of in terms of an application
and a supporting platform. A supporting platform typically
includes a hardware infrastructure of one or more processor
cores, input/output, memory, and fixed storage (the combina-
tion of which supports an operating system (OS), which in
turn supports one or more applications). Applications may be
thought of as self-contained bundles of logic that rely on core
object files and related resource files. As computing has
become integral to modern industry, applications have
become co-dependent on the presence of other applications.
That is, a requisite environment for an application includes
notonly an underlying OS and supporting hardware platform,
but also other key applications.

Key applications may include application servers, database
management servers, collaboration servers, and communica-
tive logic commonly referred to as middleware. Given the
complexity of application and platform interoperability, dif-
ferent combinations of applications executing in a single
hardware platform can demonstrate differing degrees of per-
formance and stability. Virtualization technology interjects a
layer between a supporting platform and executing applica-
tions. From the perspective of business continuity and disas-
ter recovery, virtualization provides the inherent advantage of
environment portability. For example, moving an entire envi-
ronment configured with multiple different applications may
be as simple as moving a virtual image from one supporting
hardware platform to another.

In general, more powerful computing environments can
support the coexistence of multiple different virtual images
while maintaining a virtual separation between the images.
Consequently, a failure condition in one virtual image typi-
cally cannot jeopardize the integrity of other co-executing
virtual images in the same hardware platform. A virtual
machine monitor (VMM) or hypervisor manages the interac-
tion between each virtual image and underlying resources
provided by a hardware platform. A bare metal hypervisor
runs directly on the hardware platform similar to how an OS
runs directly on hardware. In contrast, a hosted hypervisor
runs within a host OS. In either case, a hypervisor can support
the operation of different guest OS images or virtual machine
(VM) images. The number of VM images is limited only by
the processing resources of a VM container that holds the VM
images or the hardware platform.

Virtualization has proven especially useful for end-users
that require separate computing environments for different
types of applications that are deployed on a single hardware
platform. For example, a primary OS native to one type of
hardware platform may provide a virtualized guest OS that is

10

15

20

25

30

35

40

45

50

55

60

65

2

native to a different hardware platform (so that applications
requiring the presence of the guest OS can co-exist with other
applications requiring the presence of the primary OS). In this
case, an end-user is not required to provide separate comput-
ing environments to support different types of applications.
That is, irrespective of the guest OS, access to underlying
resources of the single hardware platform remains static.

Virtualized environments have been deployed to aggregate
different interdependent applications in different VMs in
composing application solutions. For example, an application
server can execute within one VM while a database manage-
ment server executes in a different VM and a web server
executes in yet another VM. Each of the VMs can be com-
municatively coupled to one another in a secure network and
any given deployment of the applications can be live migrated
to a different deployment without interfering with the execu-
tion of the other applications in the other VMs. In a typical
live migration, a VM can be moved from one host server to
another host server in order to, for example, permit server
maintenance or to permit an improvement in hardware sup-
port for the VM.

Checkpoint-based high-availability (HA) is a technique in
which a VM running on a primary host machine mirrors its
processor and memory state every period (e.g., 25 mS) onto a
secondary host machine. The mirroring process typically
includes: tracking changes to the memory and processor state
of the primary VM; periodically stopping the primary VM;
sending the changes over a network to the secondary host
machine; waiting for the secondary host machine to acknowl-
edge receipt of the memory and processor state update; and
resuming the primary VM. The mirroring process ensures that
the secondary host machine is able to resume the workload
with minimal loss of service should the primary host machine
suffer a sudden hardware failure. If the secondary host
machine either detects that the primary host machine is not
responding or receives an explicit notification from the pri-
mary host machine, the secondary host machine starts the
mirrored version of the VM and the appearance to the outside
world is that the VM seamlessly continued to execute across
the failure of the primary host machine.

Although the checkpoint-based HA technique provides
effective protection against hardware failure, the checkpoint-
based HA technique does not protect against software failure.
Because the state of the processor and memory of the primary
VM is faithfully reproduced on the secondary host machine,
if a software crash (for example, the de-reference of a null
pointer) causes a failover to the secondary host machine, the
VM resumes execution from the last checkpoint and, if the
program execution is deterministic, the same error will occur.
There are some constrained cases in which a VM may not
crash if software failure triggered a failover. However, these
cases are rare and rely more on luck than design. For example,
a software bug that manifested as a race condition in which
one processor could access data that was being modified by
another processor might not occur when the workload was
resumed on the secondary host machine, as by a fluke of
scheduling the data may not end up being concurrently
accessed.

BRIEF SUMMARY

A technique of operating a data processing system,
includes logging addresses for cache lines modified by a
producer core in a data array of a producer cache to create a
high-availability (HA) log for the producer core. The tech-
nique also includes moving the HA log into a consumer cache
of'a consumer core and moving HA data associated with the

US 9,274,952 B2

3

addresses of the HA log into the consumer cache. The HA log
corresponds to a cache line that includes multiple of the
addresses. Finally, the technique includes processing, by the
consumer core, the HA log and the HA data for the data
processing system.

The above summary contains simplifications, generaliza-
tions and omissions of detail and is not intended as a com-
prehensive description of the claimed subject matter but,
rather, is intended to provide a brief overview of some of the
functionality associated therewith. Other systems, methods,
functionality, features and advantages of the claimed subject
matter will be or will become apparent to one with skill in the
art upon examination of the following figures and detailed
written description.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The description of the illustrative embodiments is to be
read in conjunction with the accompanying drawings,
wherein:

FIG. 1 is a diagram of a relevant portion of an exemplary
data processing system environment that is configured to
produce high-availability (HA) log and data according to the
present disclosure;

FIG. 2 is a diagram of a data processing system (that
includes a producer core and a producer cache) and another
data processing system (that includes a consumer core and a
consumer cache) that may deployed in the data processing
system environment of FIG. 1;

FIG. 3 is a diagram that depicts the transfer of HA log and
data from the producer cache to the consumer cache of FIG.
2 (using a cache injection command and lateral cast-out com-
mand, respectively) according to an embodiment of the
present disclosure;

FIG. 4 is a diagram of a relevant portion of a cache whose
directory includes an HA bit for each cache line to indicate
whether a cache line requires transfer from a producer cache
to a consumer cache according to another embodiment of the
present disclosure;

FIG. 5 is a flowchart of an exemplary process for creating
and injecting an HA log into a consumer cache according to
one embodiment of the present disclosure; and

FIG. 6 is a flowchart of an exemplary process for designat-
ing HA data and injecting the designated HA data into a
consumer cache according to one embodiment of the present
disclosure.

DETAILED DESCRIPTION

The illustrative embodiments provide a method, a data
processing system, and a processor configured to move
checkpoint-based high-availability (HA) log and data from a
producer cache to a consumer cache.

In the following detailed description of exemplary embodi-
ments of the invention, specific exemplary embodiments in
which the invention may be practiced are described in suffi-
cient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that logical, architectural, programmatic,
mechanical, electrical and other changes may be made with-
out departing from the spirit or scope of the present invention.
The following detailed description is, therefore, not to be

10

15

20

25

30

35

40

45

50

55

60

65

4

taken in a limiting sense, and the scope of the present inven-
tion is defined by the appended claims and equivalents
thereof.

It should be understood that the use of specific component,
device, and/or parameter names are for example only and not
meant to imply any limitations on the invention. The inven-
tion may thus be implemented with different nomenclature/
terminology utilized to describe the components/devices/pa-
rameters herein, without limitation. Each term utilized herein
is to be given its broadest interpretation given the context in
which that term is utilized. As used herein, the term ‘coupled’
may encompass a direct connection between components or
elements or an indirect connection between components or
elements utilizing one or more intervening components or
elements.

As noted above, checkpoint-based high-availability (HA)
is a technique in which a virtual machine (VM) running on a
‘primary host machine’ regularly (e.g., every 25 mS) per-
forms a ‘checkpoint’ that mirrors a processor and memory
state of the primary host machine onto a ‘secondary host
machine’. The mirroring process involves: tracking changes
to processor registers and memory of the VM; periodically
stopping the VM; sending the tracked changes (e.g., over a
network) to the secondary host machine; waiting for the sec-
ondary host machine to acknowledge receipt of the processor
and memory state update; and resuming the VM. This ensures
that the secondary host machine is able to resume the work-
load with minimal loss of service should the primary host
machine experience a sudden hardware failure.

In one or more conventional checkpoint-based HA imple-
mentations, a hypervisor identifies modified arecas of VM
memory using page protection in which all memory is marked
read-only after a checkpoint. The hypervisor functions to:
detect subsequent faults that occur when a store is first per-
formed to a page of memory; restore original access permis-
sions for the page; and mark the page as ‘dirty’ requiring
transmission of the page at a next checkpoint. In general, a
VM employing checkpointing incurs more page protection
faults than if checkpointing is not employed. It should be
appreciated that a change to a single byte on a page requires
the entire page to be transmitted to the secondary system,
since once the page protection is removed there is no way to
tell how much of the page was modified without using addi-
tional processor cycles and additional memory to compare
the page against a copy of the original page. As a result of the
requirement to send an entire dirty page to a secondary sys-
tem, conventional systems typically use relatively small page
sizes (e.g., 4K page sizes, as contrasted with 64K page sizes)
to reduce traffic between primary and secondary systems. In
this case, conventional system performance may be adversely
affected as an operating system (OS) is not able to utilize large
pages.

According to one or more aspects of the present disclosure,
modifications to memory may be logged without page faults
at a cache line granularity by maintaining a buffer that is
populated with addresses of cache lines that have been modi-
fied by a producer processor core (producer core) since the
last checkpoint. The buffer can be inspected, either during
checkpointing or speculatively prior to a checkpoint, in order
to determine which cache lines need to be transmitted to the
secondary system in order to maintain a consistent memory
image. Maintaining the buffer in cache generally reduces
page faults and reduces the traffic between primary and sec-
ondary systems due to the smaller granularity of modification
(i.e., a cache line, rather than a page). The buffer approach is

US 9,274,952 B2

5

also page-size agnostic and, as such, systems can utilize
larger page sizes without incurring page-size related perfor-
mance penalties.

According to one or more embodiments of the present
disclosure, logging a cache line address yields a significant
performance advantage and complexity reduction over
known approaches. In various embodiments, the disclosed
techniques may be implemented in hardware, with some
components implemented in cache and some parameters
exposed via processor registers that are only accessible to
privileged hypervisor code. In one or more embodiments,
hypervisor software is modified to take advantage of added
hardware features.

Within a cache hierarchy of any modern processor design
there exists some form of cast-out engine and snoop-inter-
vention engine. A cast-out engine is responsible for writing
data evicted from the cache back to system memory or into a
cache associated with another processor. A snoop-interven-
tion engine is responsible for providing data from a given
cache to another processor that is trying to gain access to a
cache line that includes the data. Operation of the cast-out
engine may be triggered by, for example, a requirement to
free-up space in a cache for incoming data. Operation of the
snoop-intervention engine may be triggered to, for example,
provide another processor exclusive access to a cache line in
the event that the processor wishes to modify data in the cache
line. In general, during a checkpoint interval (i.e., a time
between two checkpoints), every cache line modified
between checkpoints is either resident as dirty data in a cache
or has been through a cast-out or snoop-intervention engine
and, at a checkpoint, a cache walk/scrub can be triggered.

A cache flush pushes dirty data out to system memory such
that every cache line modified between checkpoints is guar-
anteed to have been through the cast-out engine. A cast-out
engine and snoop-intervention engine may be modified so
that, as well as writing dirty cache line data to memory/
another cache, the engines can also operate in a mode in
which the address of the modified cache line is written to a
circular buffer that resides in cache. In order to increase
efficiency, cache hardware may be configured to manage an
intermediate buffer (e.g., a two cache line deep buffer) that
collects an address reported by cast-out and/or snoop-inter-
vention engines. In one or more embodiments, when the
intermediate buffer is filled with a full cache line payload of
addresses, the cast-out engine (through a cast-out command)
moves the contents of the intermediate buffer to the circular
buffer. In at least one embodiment, each cache line in the
intermediate buffer holds up to sixteen eight-byte addresses.

It should be appreciated that not all processor cores of a
data processing system run in a producer mode at all times. A
processor core that runs in the producer mode is referred to
herein as a ‘producer core’. A processor core may be placed
into producer mode by setting a hardware flag that is acces-
sible to a hypervisor. In a least one embodiment, when a
processor core is in producer core mode, in order to manage
writing to the circular buffer the cast-out engine maintains
registers containing: a base (whichis a pointer to base address
of the buffer); a producer head (which is an offset within the
buffer to which a next address will be written); a barrier
(which is a boundary pointer); and a size (which is an indi-
cation of the size of the buffer).

In various embodiments, an HA log is maintained in
memory that is separate from memory allocated to a virtual
machine (VM) and is only accessible to a hypervisor. When in
producer core mode, cast-out and snoop-intervention opera-
tions, in addition to the regular cast-out and/or snoop-inter-
vention behavior, are configured to log an address of a modi-

10

15

20

25

30

35

40

45

50

55

60

65

6

fied cache line to a currently-filling intermediate buffer (e.g.,
using ping-pong buffering so that one buffer can be filled
while the other is being written back to another memory) of
the cache. When in producer core mode, a cast-out engine
may be commanded to move cache lines from the intermedi-
ate buffer (as they fill) of the cache to the circular buffer in
cache through the following behavior: issue a store of the
cache line address to the producer head pointer; increment the
producer head pointer, wrapping around to base if the pro-
ducer head pointer goes to base+size; and if producer head is
equal to the barrier, a fault is delivered to the hypervisor.

In various embodiments, when a next checkpoint occurs:
the hypervisor on the primary host suspends execution of the
VM; a cache walk operation is triggered to generate entries
for an HA log; and a consumer core, which may be a physi-
cally different core or the same core (but no longer in pro-
ducer core mode), traverses the HA log and, for each entry,
reads the address, reads the current data at the address from
the memory of the VM, transmits the (address, data) pair to
the secondary host, where it is used to update the memory
image of a secondary VM, synchronizes other state (e.g.,
processor registers) with the secondary system, and then ini-
tiates resumption of execution of the primary VM.

A consumer core may implement various optimizations.
For example, when a particular address has been cast-out
several times in a checkpoint interval, the cast-out address
will appear in a log multiple times. It should be appreciated
that duplicate cast-out addresses only need to be transmitted
to the secondary system once, as it is the current data in the
memory of the VM that is transmitted and not the data at the
time of cast-out (which is not logged). As such, the consumer
core may perform some reduction in order to reduce band-
width to the secondary system. As above, when the VM
utilizes multiple processor cores and the same cache line is
cast-out by more than one producer core during the same
checkpoint interval, the address will appear in multiple logs
but only needs to be transmitted once. Again, some reduction
across logs can be performed to reduce bandwidth.

The consumer core may start to speculatively process the
HA log of the producer core prior to the checkpoint. While
speculatively processing the HA log of the producer core
reduces the scope for reduction, speculatively processing the
HA log of the producer core smoothes the data transfer to the
secondary system and makes more efficient use of the avail-
able total bandwidth. It should be noted that the bulk of the
working footprint utilized by the primary VM may reside in
cache for the duration of time between checkpoints and the
bulk of the logging occurs at checkpoint time. The natural
caching by the hardware may do an efficient job at only
logging a given cache line once even when it has been stored
to multiple times between checkpoints. The purpose of the
barrier register is to ensure that no data is lost during a check-
point operation due to a log wrap. The barrier points to the
first log record in the checkpoint interval to ensure that data
cannot be overwritten, based on the check of the producer
head against the barrier.

In various embodiments, if the barrier is reached, then
either a failover to the secondary system is initiated or all VM
memory is resynchronized. The failover to the secondary
system or VM memory resynchronization is desirable as there
may be dirty data in the cache that has not yet been through the
cast-out engine. In this case, it is not desirable to simply
initiate an immediate checkpoint, as there is no where for the
dirty addresses to be logged. In general, a hypervisor should
both ensure that a log is appropriately sized and also monitor
the producer head pointer regularly, initiating an early check-
point if a log overflow is anticipated. If the consumer core is

US 9,274,952 B2

7

speculatively processing the log, the hypervisor may periodi-
cally move the barrier pointer along so that the overflow is
only triggered if the producer core collides with log entries
that the consumer core has not already processed (in the event
the consumer core falls behind).

Modifications may be implemented that cause a cast-out
engine and snoop-intervention engine to log memory
addresses leaving the cache between checkpoints and at a
checkpoint initiate a cache flush to ensure that no modified
data remains in the cache (thereby ensuring that modified data
passes through the cast-out engine and is logged). A draw-
back of this approach is that a cache flush is required at every
checkpoint interval. The cache flush results in additional
pressure on the cast-out engine and memory subsystem and
generally reduces performance of a workload that is running
in highly-availability (HA) mode.

According to another approach, all addresses are guaran-
teed to be logged at a checkpoint interval without requiring a
cache flush by introducing a new ‘HA bit’ for every cache line
inacache. The HA bit is set by a modification of the cache line
when a processor core is running in producer core mode and
may be cleared as part of a cache walk operation, which is
executed at a checkpoint and walks the cache causing cache
lines for which the HA bit is asserted to log their addresses to
the circular buffer. The HA bit is then de-asserted for all cache
lines. In this implementation, the data associated with the
cache line is not written to system memory and the cache line
is still marked as ‘dirty’ within the cache. Processor caches
are typically implemented as lookup tables that associate an
address (tag) with some data. The tag may be a virtual or a
physical address, or some combination thereof, and the data is
of a fixed size (e.g., a cache line). For any given tag there may
be several locations in the cache where the data could be
found and, as such, a cache lookup typically involves the
inspection of a number of slots to find a matching tag. Addi-
tionally, slots may not contain any data and, as such, a slot
typically includes not just the data to be associated with the
tag, but also multiple flags.

According to another implementation, the HA bit is added
to every slot in the cache. The HA bit is asserted when data
associated with a cache line is updated by a processor core
running in producer core mode. At a checkpoint, a cache walk
operation traverses the entire cache, similar to a cache flush,
but rather than examining the ‘dirty bit” and pushing the data
out to system memory, the cache walk operation instead
examines the ‘HA bit’ and pushes the physical address out to
the circular buffer.

In most computing systems, it is common to have several
layers of cache (e.g., level 1 through level N (i.e., L1 through
LN), where L1 represents the fastest, smallest cache that is
closest to the processor core and N is typically 3 or 4 and tends
to be slower and larger as N increases). In one or more
embodiments, a cache walk operation traverse all caches that
may contain HA modified data, but this does not necessarily
mean that all caches must be traversed as some cache levels
may be write-through or write-back. As is known, write-
through caches retain data in the cache, but also synchro-
nously push the data back to the next cache level to facilitate
fast access times for subsequent reads. Writes for write-
through caches are more expensive than in a write-back
caches, since a writer must wait for write completion from the
(slower) next level cache. Write-through caches do not need
to be flushed. Write-back caches retain data in the cache and
do not synchronously push the data to the next level in the
cache. With write-back caches the process of writing to the
cache is faster, at the expense of having to manage data
coherency between caches in a symmetric multi-processor

10

15

20

25

30

35

40

45

50

55

60

65

8

(SMP) system. The cost of writing to the next level in the
cache is incurred when data is evicted from the cache to make
room for additional data.

In a multi-layer cache hierarchy, only the write-back
caches need to be traversed by a cache walk operation. For
example, in a system that includes a write-through L1 cache,
a write-back [.2 cache, and a write-back L3 cache, any write
performed by a processor will go to the [.1 cache and (since it
is write-through) also be written to the [.2 cache. In this case,
there is no dirty data in the L1 cache that is not in the L2 cache.
As more space is needed in the [.2 cache, dirty data is evicted
and becomes dirty data in the [.3 cache. In this example,
writes performed in producer core mode set the HA bit in the
L2 cache for the associated cache line. When a cache line with
the HA bit set in the L2 cache is cast-out to the L3 cache, the
HA bitinthe L3 cache associated with the cache line is set. In
this example, the L1 cache does not require HA bits. At a
checkpoint, the cache walk operation needs to traverse both
the 1.2 and L3 caches, writing all the physical addresses for
cache lines with the HA bit asserted to the circular buffer and
clearing all the HA bits once the operation is complete.

The above descriptions describe enhancements to cache
hardware to ensure that at regular intervals a circular buffer in
cache stores a list of all memory locations that have been
modified since the last checkpoint by a given processor core.
The list of modified memory locations may be used to
improve system performance and reliability. The list of modi-
fied memory locations (stored in a “circular buffer’, ‘HA log’,
or ‘HA table’) is maintained by supporting caches, e.g.,
L2/L3 caches, and modified cache lines hold HA data. The
HA log and HA data are processed by a consumer core to
provide system reliability and redundancy. HA producer
caches have conventionally written an HA log to system
memory. As HA data is victimized out from a cache associ-
ated with an HA producer core, the HA data has also conven-
tionally been written to system memory.

To process the HA log and HA data, a consumer core has
conventionally read both the HA log and the HA data from
system memory. The conventional approach requires mul-
tiple accesses to system memory, incurs a relatively large
bandwidth toll on memory resources, consumes power, and
increases the time for the consumer core to processes the HA
log and HA data, as compared to the techniques disclosed
herein. In modern large servers, memory resource is at a
premium and memory power is a major component of system
power. According to the present disclosure, the time to pro-
cess an HA log and HA data is reduced, which increases the
time a system can devote to other tasks.

According to one or more embodiments of the present
disclosure, a producer cache associated with an HA producer
core moves an HA log (from a circular buffer in a producer
cache) directly into a cache of an HA consumer core. Accord-
ing to various aspects, a producer cache also moves HA data
stored in the producer cache directly into a cache of the
consumer core. In this manner, the movement of HA log and
HA data by a producer cache out to system memory followed
by the consumer core having to fetch both the HA log and the
HA data from the system memory is eliminated. As such, the
required time for a consumer core to perform an HA system
backup is reduced, the burden on memory resources is low-
ered, and power consumption associated with implementing
HA is reduced.

In various embodiments, HA producer caches are config-
ured to identify cache lines that should be put into the HA log.
For HA log entries, an HA producer includes hardware reg-
isters to identify the location of the HA log. In one or more
embodiments, an HA producer cache utilizes a system bus

US 9,274,952 B2

9

‘cache inject’ command or ‘forced cache inject’ command to
coherently install the HA log entry directly into a cache of an
HA consumer core (instead of writing the HA log entry to
system memory). The cache inject command is configured to
maintain coherency since the producer core does not have
ownership of the HA log cache line at the time of HA log
writing. As is known, a cache inject command is a special
system bus command that facilitates writing a cache line
directly into a cache (e.g., a consumer cache). HA data can be
distinguished from non-HA data based on an ‘HA bit’ in a
directory of a producer cache that is used to track which cache
lines were modified by an HA producer core.

When a producer cache victimizes HA data, a lateral cast-
out (LCO) command can be used to coherently transfer the
HA datato acache (onasamelevel, e.g.,1.2-1.2,1.3-1.3) of an
HA consumer core rather than system memory. The LCO
command allows a producer cache to specifically target a
cache of a consumer core for all HA data. In one or more
embodiments, an LCO command is used to transfer HA data
as a producer core already has ownership of the HA data and
the LCO is more efficient. The consumer core, when process-
ing the HA log (via normal loads), will find the HA log cache
line entries already in its own L2 and L3 caches, which
minimizes the time required to access the HA log (the HA log
points to HA data cache lines). When a consumer core ini-
tiates HA data processing, those HA data cache lines are
found already installed coherently in consumer core caches
(e.g., L2 and L3 caches of the consumer core). Moving HA
logs and HA data directly from a producer cache to a con-
sumer cache greatly reduces system bus traffic and latency
associated with the consumer core processing HA logand HA
data that is required to perform an HA backup of a system.

With reference to FIG. 1, an exemplary data processing
environment 100 is illustrated that includes a data processing
system 110 that is configured, according to one or more
embodiments of the present disclosure, to move HA logs and
HA data directly from a producer cache to a consumer cache.
Data processing system 110 may take various forms, such as
workstations, laptop computer systems, notebook computer
systems, desktop computer systems or servers and/or clusters
thereof. Data processing system 110 includes one or more
processing units or processors 102 (each of which may
include one or more processor cores for executing program
code) coupled to a data storage subsystem 104, optionally a
display 106, one or more input devices 108, and a network
adapter 109. Data storage subsystem 104 may include, for
example, application appropriate amounts of various memo-
ries (e.g., dynamic random access memory (DRAM), static
RAM (SRAM), and read-only memory (ROM)), and/or one
or more mass storage devices, such as magnetic or optical
disk drives.

Data storage subsystem 104 includes one or more operat-
ing systems (OSs) 114 for data processing system 110. Data
storage subsystem 104 also includes application programs,
such as a browser 112 (which may optionally include cus-
tomized plug-ins to support various client applications), a
hypervisor (or virtual machine monitor (VMM)) 116 for
managing one or more virtual machines (VMs) 120 as instan-
tiated by different OS images, and other applications (e.g., a
word processing application, a presentation application, and
an email application) 118.

Display 106 may be, for example, a cathode ray tube (CRT)
or a liquid crystal display (LCD). Input device(s) 108 of data
processing system 110 may include, for example, a mouse, a
keyboard, haptic devices, and/or a touch screen. Network
adapter 109 supports communication of data processing sys-
tem 110 with one or more wired and/or wireless networks

10

15

20

25

30

35

40

45

50

55

60

65

10

utilizing one or more communication protocols, such as
802.x, HTTP, simple mail transter protocol (SMTP), etc. Data
processing system 110 is shown coupled via one or more
wired or wireless networks, such as the Internet 122, to vari-
ous file servers 124 and various web page servers 126 that
provide information of interest to the user of data processing
system 110. Data processing environment 100 also includes
one or more data processing systems (DPSs) 150 that are
configured in a similar manner as data processing system 110.
In general, data processing systems 150 represent data pro-
cessing systems that are remote to data processing system 110
and that may execute OS images that may be linked to one or
more OS images executing on data processing system 110.

Those of ordinary skill in the art will appreciate that the
hardware components and basic configuration depicted in
FIG. 1 may vary. The illustrative components within data
processing system 110 are not intended to be exhaustive, but
rather are representative to highlight components that may be
utilized to implement the present invention. For example,
other devices/components may be used in addition to or in
place of the hardware depicted. The depicted example is not
meant to imply architectural or other limitations with respect
to the presently described embodiments.

With reference to FIG. 2, relevant components of data
processing systems (DPSs) 110 and 150 are illustrated in
additional detail. DPSs 110 and 150 may include one or more
processors 102 each of which include alevel 1 (LL1) cache that
is coupled to one or more other cache levels (e.g., .2 and L3
caches) that may be, for example, implemented in data stor-
age subsystem 104. As is illustrated in FIG. 2, DPS 110
includes a producer core 202 that is coupled to a producer
cache (e.g., an L.2 and/or an L3 cache) 204. As is illustrated,
producer cache 204 may include a cast-out engine 205, a
snoop-intervention engine 206, a circular buffer 207, and an
intermediate buffer 208. Similarly, DPS 150 includes a con-
sumer core 212 that is coupled to a consumer cache (e.g., an
L2 and/or an L3 cache) 214. While producer core 202/pro-
ducer cache 204 and consumer core 212/consumer cache 214
are illustrated as being in different data processing systems, it
should be appreciated that producer core 202, producer cache
204, consumer core 212, and consumer cache 214 may be
implemented within a same data processing system that
includes multiple processor cores.

With reference to FIG. 3, producer cache 204 is illustrated
as storing HA data 302 and HA log 304 directly into con-
sumer cache 214. HA data 302 and HA log 304 may be stored
in a same cache level (e.g., L2 or L3) or may be stored in
different cache levels. Consumer cache 214 is illustrated as
storing HA data 302 responsive to a lateral cast-out (LCO)
command from producer cache 204. Consumer cache 214 is
also illustrated as storing HA log 304 responsive to a cache
injection command from producer cache 204. It should be
appreciated that HA data 302 and HA log 304 may be moved
directly from producer cache 204 to consumer cache 214
using other types of operations. In general, the time required
by consumer core 212 to process HA log 304 and HA data 302
is greatly reduced, as consumer core 212 does not have to
retrieve HA log 304 and HA data 302 from system memory.
As used herein, the term “system memory” refers to “main
memory” and does not include “cache memory.”

With reference to FIG. 4, an exemplary cache 402 is
depicted that includes a directory 404 (that includes a tag and
an HA bit for each cache line) and an array 406 (that includes
data). It should be appreciated that directory 404 may also
include a number of flags (not shown) for each cache line. As
mentioned above, the HA bit indicates whether a cache line
requires transfer from producer cache 204 to consumer cache

US 9,274,952 B2

11

214 for processing. The HA bit is asserted when data associ-
ated with a cache line is updated by producer core 202 (which
is a processor core that is running in producer core mode). At
a checkpoint, a cache walk operation (e.g., performed by, at
least in part, cast-out engine 205) may traverse the entire
producer cache 204 to examine the ‘HA bit’ for each cache
line. A physical address for each cache line with an asserted
HA bit is then written to HA log 304 (which may correspond
to intermediate buffer 208). In one or more embodiments,
when HA log 304 is full (or at some other threshold level, e.g.,
three-quarters full), producer cache 204 moves (e.g., respon-
sive to a cache injection command issued by snoop interven-
tion engine 206) HA log 304 to consumer cache 214 for later
processing. In one or more embodiments, when HA data 302
is victimized (i.e., when a cache line is ejected from producer
cache 204 to make room for additional data), producer cache
204 moves (e.g., responsive to issuance of a lateral cast-out
command from cast-out engine 205) HA data 302 to con-
sumer cache 214 for later processing. Alternatively, producer
cache 204 may move (e.g., responsive to a lateral cast-out
command) HA data 302 to consumer cache 214 prior to
victimization. In any event, consumer core 212 utilizes HA
log 304 to determine the location of HA data 302 when HA
processing is initiated.

With reference to FIG. 5, a process 500 is illustrated that is
initiated in block 502 each time, for example, an HA log 304
requires creation (e.g., in response to finding an HA line
during a cache walk, a cache flush, an HA cache line victim-
ization, and/or an HA cache line intervention) of a new entry.
Next, in block 504, producer cache 204 creates an entry in HA
log 304 in producer cache 204. Then, in block 506 producer
cache 204 logs an address of a modified cache line in HA log
304 (e.g., in intermediate buffer 208 of producer cache 204).
Next, in block 507 producer cache 204 deasserts an HA bit for
the logged cache line. Then, in decision block 508, producer
cache 204 determines whether HA log 304 has reached a
predetermined fill level (e.g., seventy percent full, eighty
percent full, full). In response to HA log 304 not being full in
block 508, control transfers from block 508 to block 506. In
response to HA log 304 being at the predetermined fill level in
block 508, control transfers from block 508 to block 510,
where producer cache 204 initiates (e.g., following transfer of
the HA log from intermediate buffer 208 to circular buffer
207 of producer cache 204) cache injection of HA log 304
into consumer cache 214. In addition to initiating cache injec-
tion of HA log 304 into consumer cache 214 in block 510,
another process 500 may be spawned to speed up checkpoint-
ing. Alternatively, another threshold may be utilized by pro-
ducer cache 204 to determine when to inject HA log 304 into
consumer cache 214. Following block 510, process 500 ter-
minates in block 512 until a next HA log requires creation.

With reference to FIG. 6, a process 600 is illustrated that is
initiated in block 602 each time, for example, HA data 302 is
created. Next, in block 604, producer cache 204 asserts an HA
bit for a modified cache line to indicate that the cache line
should be logged as HA data 302 in producer cache 204.
Then, in decision block 606 producer cache 204 determines
whether a cache line in HA data 302 is being victimized. In
response to a cache line in HA data 302 not being victimized
in block 606, control loops on block 606. In response to a
cache line in HA data 302 being victimized in block 606,
control transfers from block 606 to block 608, where pro-
ducer cache 304 initiates movement of the modified cache
line (i.e., HA data 302) into consumer cache 214. For
example, the modified cache line may be moved from pro-
ducer cache 204 to consumer cache 214 using a lateral cast-
out (LCO) command. Alternatively, the modified cache line

10

20

25

30

40

45

50

55

60

65

12

may be moved from producer cache 204 to consumer cache
214 prior to victimization of the modified cache line. Follow-
ing block 608, process 600 terminates in block 610 until a
next cache line is modified in producer cache 204.

Accordingly, techniques have been disclosed herein that
move checkpoint-based high-availability (HA) log and data
directly from a producer cache to a consumer cache.

In the flow charts above, the methods depicted in FIGS. 5
and 6 may be embodied in a computer-readable medium
containing computer-readable code such that a series of steps
are performed when the computer-readable code is executed
on a computing device. In some implementations, certain
steps of the methods may be combined, performed simulta-
neously or in a different order, or perhaps omitted, without
deviating from the spirit and scope of the invention. Thus,
while the method steps are described and illustrated in a
particular sequence, use of a specific sequence of steps is not
meant to imply any limitations on the invention. Changes may
be made with regards to the sequence of steps without depart-
ing from the spirit or scope of the present invention. Use of a
particular sequence is therefore, not to be taken in a limiting
sense, and the scope of the present invention is defined only
by the appended claims.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer-readable
medium(s) having computer-readable program code embod-
ied thereon.

Any combination of one or more computer-readable medi-
um(s) may be utilized. The computer-readable medium may
be a computer-readable signal medium or a computer-read-
able storage medium. A computer-readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing, but does not include a computer-readable sig-
nal medium. More specific examples (a non-exhaustive list)
of the computer-readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer-readable storage medium may be
any tangible storage medium that can contain, or store a
program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer-
readable signal medium may be transmitted using any appro-

US 9,274,952 B2

13

priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be stored in a
computer-readable storage medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer-readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks. The computer program instructions
may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other devices to produce a com-
puter implemented process such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci-
fied in the flowchart and/or block diagram block or blocks.

As will be further appreciated, the processes in embodi-
ments of the present invention may be implemented using any
combination of software, firmware or hardware. As a prepa-
ratory step to practicing the invention in software, the pro-
gramming code (whether software or firmware) will typically
be stored in one or more machine readable storage mediums
such as fixed (hard) drives, diskettes, optical disks, magnetic
tape, semiconductor memories such as ROMs, PROMs, etc.,
thereby making an article of manufacture in accordance with
the invention. The article of manufacture containing the pro-
gramming code is used by either executing the code directly
from the storage device, by copying the code from the storage
device into another storage device such as a hard disk, RAM,
etc., or by transmitting the code for remote execution using
transmission type media such as digital and analog commu-
nication links. The methods of the invention may be practiced

10

15

20

25

30

35

40

45

50

55

60

65

14

by combining one or more machine-readable storage devices
containing the code according to the present invention with
appropriate processing hardware to execute the code con-
tained therein. An apparatus for practicing the invention could
be one or more processing devices and storage subsystems
containing or having network access to program(s) coded in
accordance with the invention.

Thus, it is important that while an illustrative embodiment
of the present invention is described in the context of a fully
functional computer (server) system with installed (or
executed) software, those skilled in the art will appreciate that
the software aspects of an illustrative embodiment of the
present invention are capable of being distributed as a pro-
gram product in a variety of forms, and that an illustrative
embodiment of the present invention applies equally regard-
less of the particular type of media used to actually carry out
the distribution.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular system,
device or component thereof'to the teachings of the invention
without departing from the essential scope thereof. There-
fore, it is intended that the invention not be limited to the
particular embodiments disclosed for carrying out this inven-
tion, but that the invention will include all embodiments fall-
ing within the scope of the appended claims. Moreover, the
use of the terms first, second, etc. do not denote any order or
importance, but rather the terms first, second, etc. are used to
distinguish one element from another.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method of operating a data processing system, the
method comprising:

logging addresses for cache lines modified by a producer

core in a data array of a producer cache to create a
high-availability (HA) log for the producer core,
wherein the HA log corresponds to a cache line that
includes multiple of the addresses;

US 9,274,952 B2

15

asserting a HA bit when data associated with a cache line is
updated by a processor core running in producer core
mode; and

executing a checkpoint, which triggers a cache walk opera-

tion to traverse the entire cache, wherein the cache walk
operation examines the ‘HA bit” and pushes the physical
address out to the circular buffer;

moving the HA log directly from the producer cache to a

consumer cache of a consumer core;

moving HA data associated with the addresses of the HA

log directly from the producer cache to the consumer
cache; and

processing, by the consumer core, the HA log and the HA

data for the data processing system.

2. The method of claim 1, wherein the modified cache lines
are indicated by an HA bit.

3. The method of claim 1, wherein logging addresses for
cache lines modified by a producer core in a producer cache
includes logging addresses for the modified cache lines in an
intermediate buffer associated with the producer cache.

4. The method of claim 1, wherein the moving HA data
associated with the addresses of the HA log directly from the
producer cache to the consumer cache occurs in response to
the producer cache victimizing the HA data.

5. The method of claim 4, wherein the producer cache
utilizes a lateral cast-out (LCO) command to initiate coherent
transfer of the HA data from the producer cache to the con-
sumer cache.

6. The method of claim 1, wherein the consumer cache is a
level 2 (I.2) cache or a level 3 (L3) cache.

7. The method of claim 1, wherein the HA log and HA data
are checkpoint-based high-availability (HA) log and data.

8. The method of claim 1, further comprising setting a HA
bit that is associated with a cache line in response to a modi-
fication of the cache line when a processor core is running in
producer core mode, wherein the HA bit is cleared as part of
a cache walk operation executed at a checkpoint, which
causes cache lines for which the HA bit is asserted to log their
addresses to the circular buffer, whereby use of the HA bit
guarantees that all addresses are logged at a checkpoint inter-
val without requiring a cache flush, wherein the processor
further de-asserts the HA bit for all cache lines following the
checkpoint.

9. The method of claim 1, further comprising:

in response to a write performed when the processor is in

producer core mode, setting the HA bit in the L2 cache
for the associated cache line; and

in response with a cache line with the HA bit set in the [.2

cache being cast-out to the L.3cache, setting the HA bitin
the L3 cache associated with the cache line.

10. The method of claim 1, further comprising:

traversing both the [.2 and [.3 caches during a cache walk

operation at a next checkpoint;

writing all physical addresses for cache lines with the HA

bit asserted to the circular buffer; and

clearing all the HA bits once the cache walk operation is

completed.

11. A method of operating a data processing system, the
method comprising:

logging addresses for cache lines modified by a producer

core in a data array of a producer cache to create a
high-availability (HA) log for the producer core,
wherein the HA log corresponds to a cache line that
includes multiple of the addresses, wherein logging
addresses for cache lines modified by a producer core in

10

20

25

30

35

40

45

50

55

60

16

a producer cache includes logging addresses for the
modified cache lines in an intermediate buffer associated
with the producer cache;

moving the HA log directly from the producer cache to a

consumer cache of a consumer core, wherein moving the
HA log directly from the producer cache to a consumer
cache includes transferring the HA log from the inter-
mediate buffer to a circular buffer in response to the
intermediate buffer being full and injecting the HA log
stored in the circular buffer into the consumer cache
using a cache injection command;

moving HA data associated with the addresses of the HA

log directly from the producer cache to the consumer
cache; and

processing, by the consumer core, the HA log and the HA

data for the data processing system.

12. The method of claim 11, wherein the moving HA data
associated with the addresses of the HA log directly from the
producer cache to the consumer cache occurs in response to
the producer cache victimizing the HA data.

13. The method of claim 12, wherein the producer cache
utilizes a lateral cast-out (LCO) command to initiate coherent
transfer of the HA data from the producer cache to the con-
sumer cache.

14. The method of claim 11, wherein the consumer cache is
alevel 2 (L2) cache or a level 3 (L.3) cache.

15. The method of claim 11, wherein the HA log and HA
data are checkpoint-based high-availability (HA) log and
data.

16. The method of claim 11, wherein the modified cache
lines are indicated by an HA bit, and the method further
comprises setting a HA bit that is associated with a cache line
in response to a modification of the cache line when a pro-
cessor core is running in producer core mode, wherein the HA
bit is cleared as part of a cache walk operation executed at a
checkpoint, which causes cache lines for which the HA bit is
asserted to log their addresses to the circular buffer, whereby
use of the HA bit guarantees that all addresses are logged at a
checkpoint interval without requiring a cache flush, wherein
the processor further de-asserts the HA bit for all cache lines
following the checkpoint.

17. The method of claim 11, further comprising:

asserting the HA bit when data associated with a cache line

is updated by a processor core running in producer core
mode; and

executing a checkpoint, which triggers a cache walk opera-

tion to traverse the entire cache, wherein the cache walk
operation examines the ‘HA bit” and pushes the physical
address out to the circular buffer.

18. The method of claim 4, further comprising:

in response to a write performed when the processor is in

producer core mode, setting the HA bit in the L.2 cache
for the associated cache line; and

in response with a cache line with the HA bit set in the 1.2

cache being cast-out to the .3cache, setting the HA bitin
the L3 cache associated with the cache line.

19. The method of claim 11, further comprising:

traversing both the .2 and L3 caches during a cache walk

operation at a next checkpoint;

writing all physical addresses for cache lines with the HA

bit asserted to the circular buffer; and

clearing all the HA bits once the cache walk operation is

completed.

